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ABSTRACT 

Approximate Bayesian computation has emerged as a standard computational tool 

when dealing with the increasingly common scenario of completely intractable 

likelihood functions in Bayesian inference. We show that many common Markov 

chain Monte Carlo kernels used to facilitate inference in this setting can fail to be 

variance bounding, and hence geometrically ergodic, which can have consequences for 

the reliability of estimates in practice. We then prove that a recently introduced 

Markov kernel in this setting can be variance bounding and geometrically ergodic 

whenever its intractable Metropolis-Hastings counterpart is, under reasonably weak 

and manageable conditions. We indicate that the computational cost of the latter kernel 

is bounded whenever the prior is proper, and present indicative results on an example 

where spectral gaps and asymptotic variances can be computed Motivated by these 

considerations we study both the variance bounding and geometric ergodicity 

properties of a number of reversible kernels used for approximate Bayesian 

computations  

  

Keywords: Approximate Bayesian computation; Markov chain Monte Carlo; Local 

adaptation. 

 

1. INTRODUCTION 

 The Approximate Bayesian computation refers to branch of Monte 

Carlo methodology that utilizes the ability to simulate data according to a 

parameterized likelihood function in lieu of computation of that likelihood to 

perform approximate, parametric Bayesian inference. These methods have 

been used in an increasingly diverse range of applications since their 

inception in the context of population genetics (Tavare et al. (1997); 
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Pritchard et al. (1999)), particularly in cases where the likelihood function is 

either impossible or computationally prohibitive to evaluate. 

  

We are in a standard Bayesian setting with data y Y a parameter 

space , a prior :p   and for each   likelihood :f Y  we 

assume Y is a metric space and consider the artificial likelihood. 

 
1 1

( )( ) : ( ) 1 ( ) ( ) ( ) ( ( ))B x

Y

f y V y f x dx V f B y




                             (1)  

 

This is commonly employed in approximate Bayesian computation. 

Here,  rB z  denotes a metric ball of radius r around z,    

     
rB 0

V r : 1 x dx
Y

  denotes the volume of a ball of radius r in Y and 1 is 

the indicator function. We adopt a slight abuse of notation by referring to 

densities as distributions, and where convenient, employ the measure-

theoretic notation,  

 

( ) ( ).
A

A d     

 

 We consider situations in which both  and y  are fixed, and so 

define functions  : 0,1h  and  : 0,1w Y   by     :h f B y   and 

     : 1
B x

w x y


 to simplify the presentation. The value  h  can be 

interpreted as the the probability of “hitting”  B y with a simple draw 

from .f    

 

2. THE MARKOV KERNELS  

 In these sections we describe the algorithmic specification of the 

 invariant Markov kernels under study. The algorithms specify how to 

sample from each kernel in each, a candidate  is proposed according to a 

common proposal  ,.q   and accepted or rejected, possibly along with other 

auxiliary variables, using simulations from likelihoods f  and f  we assume 

that for  ,  ,.q  and p  are densities with respect to a common 

dominating measure, e.g the Lebesgue or counting measures. 

The first and most basic Markov kernel in this setting was proposed 

in Marjoram et al. (2003) and is a special case of a pseudo-marginal kernel 
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(Beaumont (2003)). Such kernels have been used in the context of 

approximate Bayesian computations in Del Moral et al. (2012) and involve 

on  NY by additionally sampling auxiliary variables 1:
N

Nz f
  for a 

fixed N  .We denote kernels of this type for any N  by 1,NP , and describe 

their simulation in algorithm 1.  

 

Algorithm 1. To sample from   1, 1:, ,.N NP x  

 

(1)  Sample  ,.q  and 1:

N

Nz f . 

(2) With probability 
     

     
1

1

,
1 ,

,

N

jj

N

jj

p q w z

p q w x

  

  









 output  1:, .Nz  

Otherwise, output  1:, Nx . 

 

In Lee et al. (2012), two alternative kernels were proposed in this 

context, both of which evolve on .  One denoted 2,NP  and described in 

Algorithm 2, is an alternative pseudo-marginal kernel that in addition to 

sampling 1:

N

Nz f , also samples auxiliary variables 1

1: 1

 



N

Nx f . Detailed 

balance can be verified directly upon interpreting  
1

:



N

z jj
S w z and 

 
1

1
:






N

x jj
S w x as Binominal   ,N h  and binomial 

  1,N h  random variables respectively. The other kernel, denoted 
3P  

and described in Algorithm 3, also involves sampling according to f  

and f but does not sample a fixed number of auxiliary variables. This kernel 

also satisfies detailed balance (Lee (2012), Proposition 1).  

 

Algorithm 2.  To sample from  2, ,.NP   

(1) Sample  ,.q  and 1

1: 1

 



N

Nx f and 
1,

N

Nz f . 

(2) With probability
     

     
1

1

1

,
1 ,

, 1

N

jj

N

jj

p q w z

p q w x

  

  








 
 




output .  

Otherwise output . 
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Because many of our positive results for 
3P  are in relation to

MHP , the 

metropolis-Hastings kernel with proposal q, we provide the algorithmic 

specification of sampling from 
MHP  in  

 

Algorithm 3.  To sample from  3 ,.P   

 

(1) Sample  ,.q  . 

(2) With probability
   
   

,
1 1

,

 
  
 

p q

p q

  

  
, stop and output . 

(3) For 1,2,....i until    
1

1


 
i

j jj
w z w x , sample 

ix f  

and .iz f  Set .N i          

(4) If   1Nw Z  , output . Otherwise, output .  

 

Algorithm 4, we note that in the approximate Bayesian computation setting 

use of 
MHP  is ruled out by assumption since h cannot be computed and that 

the preceding kernels are, in some sense, “exact approximations” of 
MHP . 

 

Algorithm 4. To sample from  .MHP   

 

(1) Sample  ,.q  . 

(2) With probability
     

     

,
1 ,

,

p h q

p h q

   

   

 
  

 
output . Otherwise, 

output . 

 

The kernels share a similar structure, and 2,NP , 
3P and 

MHP can each be 

written as  

         
  ' '

\
, , , 1 , , ,


   P d q d q d d


                     (2) 

 

Where only the function  ,    differs. 1,NP  can be represented similarly, 

modifications to account for its evolution on the extended space .NY  The 

representation (4) is used extensively in our analysis and we have for 2,NP  , 

3P and
MHP , respectively 
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                       (4) 

 

 
   
   

,
1

,
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C h

C h

  

  
                                  (5) 

   

where      , : ,c p q      and (4) is obtained, e.g., in (Lee (2012)). 

Finally, we reiterate that the kernels satisfy detailed balance and are therefore 

reversible. 

 

3.  THEORITICAL PROPERTIES  

 We assume that  is a metric space, and that      :H p h d     

satisfies  0,H   so   is well defined. We allow p  to be improper, i.e. for 

  1p d    to be unbounded, but otherwise assume p  is normalized, i.e. 

  1.p d    We define the collection of local proposals to be     

 

     : : 0, 0, , , , ,        c

rQ q r q B                  (6)    

 

which encompasses a broad number of common choices in practice. We 

denote by and  the collections of variance bounding and geometrically 

ergodic kernels, respectively, noting that   . In our analysis, we make use 

of of the following conditions.  
 

    1C  (i) q Q . 

(ii) 0, r    0 0c

rB . 

(iii) 0,  0  , 

 
 

0

0 .sup
cBv

h





  

    2C  (i) .q Q  

(ii)          0, 0, , , : ,K KK M B q               
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              , 0,q      either  
 
 

1,K K

h
M M

h




     or  
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    3C                20, , , : , , 0,      M q q           

either 
 
 

1,   K K

h
M M

h




 or 

 
 

1
,

, .
,

   

c
M M

c

 

 
 

  

4.  DISCUSSION 

In this our analysis suggests that 
3P  may be geometrically ergodic and 

or variance bounding in a wide variety of situations where kernels 1,NP  

and 2,NP  are not. In practice,  2C  can be verified and used to inform prior 

and proposal choice to ensure that 
3P  systematically inherits these properties 

from .MHP  Of course variance bounding or geometric ergodicity of 
MHP  is 

typically impossible to verify in the approximate Bayesian computation 

setting due to the unknown nature of .f However, a prior with regular 

contours will ensure that 
MHP  is geometrically ergodic if f decays super-

exponentially and also has a regular contours. In addition,  2C  and  3C  are 

stronger than necessary but tighter conditions are likely to be complicated and 

may require case-by-case treatment.  
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